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The intensity and s t ructure  of gravitational convection of a conducting fluid in a ver t ical  
channel excited by a high-frequency cur ren t  are  studied. It is shown that no dynamic 
boundary layer  exists .  Values of the pa rame te r s  Bi and n are  found up to which it is mean-  
ingful to take convection into account. 

1. Let us examine the question of exciting convection by a high-frequency current  in a heavy elec-  
t r ical  conducting fluid. The Joulean heat liberated as d i rec t  or alternating current  flows will form an in- 
homogeneous temperature  field in the fluid. In a gravitational field this will resul t  in the appearance of 
Archimedes forces  which cause convection in the major i ty  of cases .  The intensity and s t ructure  of the 
thermal  gravitational convection should depend essential ly on the frequency of the applied e lect r ical  field. 
In fact, in contras t  to direct  current ,  a rapidly alternating current  is distributed nonuniformly over the 
c ross  section of a homogeneous conductor.  It is concentrated on the surface (skin effect) [1]. This pheno- 
menon implies a redistribution of the heat l iberation and tempera ture  in a liquid conductor, which is felt 
in turn by the excited convection and the convective heat exchange. Since the e lect r ical  and thermophysical  
pa ramete r s  of conductors general ly  depend on temperature ,  then the thermoconvective phenomena can exert  
a r everse  effect on the distribution of the current  density over the c ross  section.  

The question of convection excited by a high-frequency current  and its influence on heat exchange in 
conducting media has hardly been studied. Several experimental  papers  [2, 3] can be mentioned, where 
[2] is devoted to an investigation of boiling heat exchange under conditions of di rect  heating of the hea t -ex-  
change surface by high-frequency currents .  In this paper the boiling heat-exchange coefficients were mea-  
sured for benzene, acetone, ethanol in copper, brass ,  and chromed copper tubes placed in a stainless steel 
cylindrical  vessel .  The influence of a high-frequency electromagnet ic  field on heat exchange with free con- 
vection of a fluid in a rectangular  steel vesse l  was investigated in [3]. The experiments  were conducted 
with water and benzene in hea ters  of the same mater ia ls  as in [2]. The measurements  car r ied  out showed 
that the high-frequency electromagnet ic  field intensifies heat exchange with free convection. The intensify- 
ing effect of the field is determined by its intensity, and the nature and temperature  of the fluid being 
heated. The paper [4] is devoted to tempera ture  distr ibution in a plane conducting layer .  A brief  analysis 
of the dimensionless temperature  profile is given therein. 

2. Let us formulate the mathematical  problem of thermal  gravitational convection in an e lect r ical ly  
conductive fluid because of Joulean heat l iberation f rom a high-frequency e lect r ical  current .  Let us s tar t  
f rom the Maxwell and continuity equations and the energy and momentum conservat ion laws. Let us make 
a number of simplifying assumptions.  Let us assume that the heat l iberation is not very  large and that the 
thermoconvect ive par t  of the problem can be written down in the Boussinesq approximation [5]: 

0_L 
Ot -}- (v.v) v = --  1.1_ Vp.j_~V~v_kg ~ (T--T*), 

P 

div v =0, 

pCp -1-- (v-v) T = ~v~T q- - -  
0 
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TABLE 1. Values of the Parameter n 

l,m 

5.10-: 

5.10-s 

mercury 

0,953.10 z 
0,238.104 
0,91 .t0 ~ 

0,953.104 
0,238.10 s 
0,91 -10 n 

melted gallium 

0,264.10 z 
0,658.103 
0,264.104 

0,264.104 
0,658.105 
0,264.10 ~ 

melted silver 

0,198.10 ~ 
0,46 -t0 3 
0,183�9 10 ~ 

0,198.104 
0,46 .105 
0,183. I06 

1 
5 

l0 

l 
5 

l0 

Let us consider the displacement  cur rent  density to be considerably less than the conduction currents ,  and 
the period of field variat ion to be large compared to the mean free path time of the charge c a r r i e r s  inthe 
conductor.  Then, neglecting the volume charges,  the e lectromagnet ic  field equations become [1]: 

div B=0, div D=0, 

B ~tH,  D=eE, 

4~t 1 0B 
r o t H : - -  ], rote . . . . .  , 

c c Ot 

j =oE.  (1) 

If the change in the conductivity ~ and permit t ivi ty  # in the volume under considerat ion is neglected, 
then it is easy to obtain the following equation to determine the e lect r ical  field within the liquid conductor: 

4n~a 0E (2) 
v2E= c 2 " 0--~' 

An analogous equation is obtained for  the magnetie field. 

We limit ourselves  here in  to the examination of the monochromat ic  fields E = E0(r)ex p (iwt), for 
which (2) goes over into the following equation in the amplitude of the e lec t r ica l  vector :  

4~t~r 
v2Eo . . . .  io)E o. (2') 

C ~ 

Together  with the appropriate boundary conditions, the sys tem (1), (2') determines  the thermoconveetive 
p roces se s  in a high-frequency e lect r ical  field in the approximation chosen. 

3. Let us study the one-dimensional  problem in a ver t ical  channel with solid nonconducting, imper -  
meable walls in detail.  Let a monochromat ic  high-frequency current  be passed along the channel. In this 
ease, the sys tem of equations 

O2E~ _ 4n~ro3 iEu, 
a x ~ c 2 

a T  O2T 1~ 02v 
0% - ' ~  = ~ ~ + ~ , v : ~g  ( T - - T * ) = O  (3) 

Ox ~ 

follows from (I)-(2'). 

Let us consider time segments much greater than the period of current fluctuation. Then, the mean 
Joulean heat liberation per period 

T r- 
= exp (2oit) dt = o  x (x) 

\ ~ / ~ j ~ .  (2) 
o 0 

can be used in the energy equation, and it can be considered that the temperature is independent of the 
time. After this, the system (3) will be in dimensionless form 

�9 02E L = 2in2E1, ax~ 
020 

- -  I E l t  ~, Ox~ 
O~vl 

(3') 
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Rela t ive  t e m p e r a t u r e  (a) and r e l a t i ve  ve loc i ty  (b) d i s -  
t r ibu t ions :  1) n = 1; 2) 15. 
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M a x i m a l  v e l o c i t i e s  (a) and t e m p e r a t u r e s  (b) as  a funct ion 
of n fo r  d i f f e ren t  Bi: 1) Bi -- 0.1; 2) 1; 3) 10; 4)oo. 

with the boundary  condi t ions  fo r  the f ie ld and the ve loc i t y  

E1(+__I) = I, v~(~ l) = 0 .  (4) 

Le t  us c o n s i d e r  boundary  condi t ions  of the th i rd  kind fo r  the t e m p e r a t u r e  in this  p a p e r  [6]: 

O0 O0 
= - - B i O  for Xl=@l,  = 0  for xl=O, (4) 

Oxl Oxl 

w h e r e  the fol lowing d i m e n s i o n l e s s  quant i t ies  have  been  in t roduced :  

Ey=E1Eo, x=xll, v=vlV, T--T| 

T~ = T*, AT= --~l~g2~ V= - ~gl~ AT 
2~, ' 

and the p a r a m e t e r  n = 12~-~-~w/c c h a r a c t e r i z e s  the r a t io  of the channel  ha l f -wid th  l to the t h i cknes s  of the 
e l e c t r i c a l  s k i n - l a y e r  5 = c / 2 ~ .  It i s  p r o p o r t i o n a l  to the channel  ha l f -wid th  l, the c i r c u l a r  f r equency  co, 
and the conduct iv i ty  or. Typ i ca l  va lue s  of  the p a r a m e t e r  n a r e  p r e s e n t e d  in Tab l e  1 fo r  m e r c u r y ,  m e l t e d  
gallium, and silver. 

Let us write down the solution of the system (3') with the boundary conditions (4) (the subscript 1 is 
henceforth omitted) 

l / / /  ch 2nx-t-cos 2nx 
[El= _ _  ch2n+cos2n ' 

O N2(2n)--N~(2nx ) _~_ 1 sh2n+s in2n  
4n~N1 (2n) Bi 2nN~ (2n) 

1 [2n2N~(2n)--N 1 (2n)--2n~x~N2(2n)+N 1 (2nx)]-~ 1 sh 2n+sin 2n (l_x~) ' 
v 16n4N1 (2n) Bi 4nN 1 (2n) 

(5) 
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F ig .  3. F lu id  d i s c h a r g e  through a channe l  as  a func t ion  of n for  d i f f e ren t  
Bi: 1) Bi = 0.1; 2) 1; 3) 10; 4) 0% 

F i g .  4. Wall  t e m p e r a t u r e s  as a func t ion  of n for  d i f f e ren t  Bi: 1) Bi = 0.1; 

2) 1; 3) 10. 

T h e r e f o r e ,  
t ive to the c e n t e r  of the channe l .  

R - 16n4N~l [ ~ - N ~ ( 2 n ) - - 2 N a ( 2 n ) + l  " n 

The heat  f luxes  on the wal ls  a r e  iden t i ca l  in  magn i tude  and equal  

sh 2n+sin  2n 

2nN 1 (2n) 

N~,~ (~)= ch ~+cos ~. 

the t e m p e r a t u r e  and ve loc i ty  depend on the two p a r a m e t e r s  n, Bi and a r e  s y m m e t r i c  r e l a -  
Let  us compute  the f luid d i s c h a r g e  through the channe l :  

sh 2n+sin  2n 

Bi 3nN 1 (2n) 

The t e m p e r a t u r e s  on the wai ls  a r e  

(6) 

(7) 

1 sh 2n+sin  2n 

Ow B[ 2nN 1 (2n) 

Let  us ana lyze  the ve loc i ty  and t e m p e r a t u r e  d i s t r i bu t ion ,  and the d i s c ha r ge  and hea t  f luxes in m o r e  
de ta i l .  Fo r  a f ixed va lue  of Bi the convec t ion  i n t e n s i t y  is a m a x i m u m  when the p a r a m e t e r  n ~ 0. In the 

l i m i t  c a s e  n = 0, f o r m u l a  (5) s i m p l i f i e s  c o n s i d e r a b l y  

0 1 - -  x ~ 1 1 - -x  2 1 
- -  + , v =  ', ( l - - x 2 ) .  

2 Bi 4 2Bi 

In the o ther  l im i t  c a se  n >> 1, the t e m p e r a t u r e  is  a lmos t  cons t an t  e v e r y w h e r e  except  at the b o u n d a r y  l a y e r s  
n e a r  the wai ls  where  it changes  ab rup t l y .  Th i s  p h e n o m e n o n  is s i m i l a r  to the e l e c t r i c a l  sk in  effect .  As 
n ~ oo the ve loc i ty  and t e m p e r a t u r e  p ro f i l e s  depend s t i l l  l e s s  on Bi and tend to z e r o .  F o r  this  the re  a r e  
two r e a s o n s .  F i r s t l y ,  for  l a rge  n, i .e . ,  as the f r equency  r i s e s ,  the fundamen ta l  Jou lean  hea t  s o u r c e s  a re  
c o n c e n t r a t e d  n e a r  the wai ls ,  hence ,  the hea t  is  e a s i l y  e l i m i n a t e d  through the wal l s .  Secondly,  as n ~ 
the t h i cknes s  of the l a y e r  conduct ing  the c u r r e n t  d i m i n i s h e s  and the r e s i s t a n c e  of the conduc to r  should in -  
c r e a s e ,  whereupon  the dc c u r r e n t  should become  l e s s .  Th i s  a lso  i mp l i e s  a d i m i n u t i o n  in  the heat  l i b e r a -  

t ion.  In p r ac t i c e ,  this  al l  holds  even  for  n -~ 15. 

An a n a l y s i s  of the e x p r e s s i o n  for  the ve loc i ty  (5) showed that, in c o n t r a s t  to the t h e r m a l  bounda ry  
l aye r ,  no dynamic  boundary  l aye r  ex i s t s .  The  r e l a t i ve  t e m p e r a t u r e  d i s t r i b u t i o n  0 / 0 m a  x and the ve loc i ty  
d i s t r i b u t i o n  V/Vma x a r e  c o n s t r u c t e d  for  Bi = ~ in  F igs .  l a  and b. It fol lows f r o m  the g raph  that  V/Vma x 
has  a l m o s t  the iden t i ca l  f o rm for  l a rge  and s m a l l  n while a quite def in i te  boundary  l a y e r  a ppe a r s  for  0 / 0 m a  x 
as n g rows .  

The m a x i m a l  t e m p e r a t u r e  0ma x and ve loc i ty  Vma x a r e  shown in  Fig.  2a, b as  a func t ion  of n for  d i f f e r -  
ent  Bi. For small values of n the 0ma x and Vma x increase rapidly, especially for small Bi (up to Bi = 1). 

The smaller the Bi, the more rapidly they increase. As n grows 0ma x and Vma x tend to zero. An analo- 
gous picture holds for the discharge R and the wall temperature 0 w (Figs. 3 and 4). The heat flux is in- 

dependent of Bi and has a maximum value equal to one for n = 0. It drops sharply for small n and then 

tends to zero for large n. 
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TABLE 2. Maximal  Veloci ty  and T e m p e r a t u r e  

w, Hz 

0 
10 5 
10 7 

Mercury 

Vma x Tmax-+-293 ~ 

7,96.10 -~ 0,5 
3,68.10 -~ 0,266 
2,2 .I0 -~ O , l l l . l O  -~ 

_ _  W a t e r  Mercury I Water 
~ (,for natural convection) 

Umax, m/sec  Tmax+293 I Vmax ' 

1 ,35 .10  -2 
6,15.10"a 
3,74-I0-5 

7,5 
3,4 

1,66.10-~ 

3.10-2 3.10-3 

Let us examine the p a r t i c u l a r  case  when Bi ~ ~ (in p r ac t i ce  Bi -~ 100), i .e . ,  the heat  exchange be-  
tween the wal ls  and the sur rounding medium occurs  by the Newton law w i t h a  constant  t e m pe r a t u r e ,  but 
with an infini te hea t -exchange  coeff ic ient  o~. Then the wall  t e m p e r a t u r e s  a re  ident ica l  and we obtain al l  
the eXpress ions  for  0, v, R without t e r m s  containing Bi.  The curves  for  Bi = oo c o r r e s pond  to this case  
in the g raphs .  

I t  should be noted that the r e s u l t s  obtained a re  va l id  for  Bi a r b i t r a r i l y  sma l l  but not equal to ze ro  
s ince  the wal ls  a r e  heat  insula ted  for  Bi = 0 and the p r o c e s s  cannot be s t a t i ona ry .  

An ana lys i s  of (5)-(7) and F igs .  2-4 shows that the convect ion in tens i ty  is  subs tan t ia l  for  Bi _> 1 up to 
n _ 5, and in the range 0, 1 __< Bi < 1 up to n ~<:.15. F o r  a more  exact  quanti tat ive c o m p a r i s o n  of the con-  
vec t ion  exci ted  by a h igh-f requency cur ren t ,  the dependence between the p a r a m e t e r s  Bi and n was found for  
convect ion with d i r e c t  cu r ren t ,  for  which the ve loc i ty  was 1 /10  the dc ve loc i ty .  This  dependence can be 
approx imated  by the equation n = 0 . 8 / B i  + 2.8 for  0.084 _< Bi _< 10 and n = 2.8 for  Bi >~ 10. 

Let us p r e sen t  numer ica l  e s t i m a t e s  showing to what f requenc ies  it  is meaningful  to take account of 

the convection exci ted by a h igh- f requency  c u r r e n t .  

P r e s e n t e d  in Table  2 a r e  values  of the m a x i m a l  ve loc i ty  Vma x and t e m p e r a t u r e  Tma  x for  Bi = co for  
m e r c u r y  and wate r  if it  is cons ide red  that i ts  conduct ivi ty is  the s ame  as for  m e r c u r y .  Also p r e sen t ed  for  
compa r i son  is the value o f  Vma x for  na tura l  convect ion.  In this  l a t t e r  case ,  as the t e m p e r a t u r e  d rops  one 
degree ,  the Vma x of water  has the o r d e r  of m m / s e c  while for  m e r c u r y  it is  tenfold g r e a t e r .  In the case  of 
convect ion caused  by a h igh- f requency  cu r r en t  with a f requency on the o r d e r  of 105 Hz, the m a x i m a l  ve loc i -  
t ies  a r e  of the same  o r d e r .  

if, ~, Y 
/3, c~ 
o~ 

e 

g 
i 
x 

E 
T 
v 

l 
Bi = o~l//X 

NOTATION 

a re  the e l e c t r i c a l  conductivity,  heat  conductivity,  and k inemat ic  v i s cos i t y  coeff ic ients ;  
a r e  the coeff ic ients  of the rmal  expansion of a fluid and heat  exchange;  
zs the c i r c u l a r  cu r r en t  f requency;  
zs the speed of light; 
is  the a cce l e r a t i on  of g rav i ty ;  
is  the imag ina ry  unit; 
is  the coordina te  pe rpend i cu l a r  to the channel;  
is  the e l e c t r i c a l  f ie ld intensi ty;  
is  the fluid t e m p e r a t u r e ;  
is  the fluid ve loc i ty ;  
zs the channel ha l f -width;  
zs the Biot c r i t e r i o n .  

1. 

2. 

3. 

4. 
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